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Therefore,
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where r, is the distance from the origin to the point a and r}, is the distance to b.
The integral around a closed path is evidently zero (for then r, = r}):

?{E~dl=0, (2.19)

and hence, applying Stokes’ theorem,

VxE=0. (2.20)

Now, I proved Eqgs. 2.19 and 2.20 only for the field of a single point charge
at the origin, but these results make no reference to what is, after all, a perfectly
arbitrary choice of coordinates; they hold no matter where the charge is located.
Moreover, if we have many charges, the principle of superposition states that the
total field is a vector sum of their individual fields:

E=E +E +...,
SO
VXE=VxE +E+..)=(VxE)+(VxE)+...=0.

Thus, Eqgs. 2.19 and 2.20 hold for any static charge distribution whatever.

Problem 2.19 Calculate V x E directly from Eq. 2.8, by the method of Sect. 2.2.2.
Refer to Prob. 1.63 if you get stuck.

2.3 B ELECTRIC POTENTIAL

2.3.1 H Introduction to Potential

The electric field E is not just any old vector function. It is a very special kind of
vector function: one whose curl is zero. E = yX, for example, could not possibly
be an electrostatic field; no set of charges, regardless of their sizes and positions,
could ever produce such a field. We’re going to exploit this special property of
electric fields to reduce a vector problem (finding E) to a much simpler scalar
problem. The first theorem in Sect. 1.6.2 asserts that any vector whose curl is zero
is equal to the gradient of some scalar. What I’'m going to do now amounts to a
proof of that claim, in the context of electrostatics.
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FIGURE 2.30

Because V x E = 0, the line integral of E around any closed loop is zero (that
follows from Stokes’ theorem). Because 55 E - dl = 0, the line integral of E from
point a to point b is the same for all paths (otherwise you could go out along path
(i) and return along path (ii)—Fig. 2.30—and obtain f E - dl # 0). Because the
line integral is independent of path, we can define a function®

V() = —/rE ~dl. 2.21)

(@]

Here O is some standard reference point on which we have agreed beforehand; V
then depends only on the point r. It is called the electric potential.
The potential difference between two points a and b is
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Now, the fundamental theorem for gradients states that

b
Vb) —V(a) = / (VV) -dl,

b b
/ (VV)-dl:—/ E - dl.

Since, finally, this is true for any points a and b, the integrands must be equal:

SO

E=-VV. (2.23)

©To avoid any possible ambiguity, I should perhaps put a prime on the integration variable:

V()= f/rE(r’) -dl.
O

But this makes for cumbersome notation, and I prefer whenever possible to reserve the primes for
source points. However, when (as in Ex. 2.7) we calculate such integrals explicitly, I will put in the
primes.
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Equation 2.23 is the differential version of Eq. 2.21; it says that the electric field
is the gradient of a scalar potential, which is what we set out to prove.

Notice the subtle but crucial role played by path independence (or, equiva-
lently, the fact that V x E = 0) in this argument. If the line integral of E depended
on the path taken, then the “definition” of V, Eq. 2.21, would be nonsense. It sim-
ply would not define a function, since changing the path would alter the value of
V (r). By the way, don’t let the minus sign in Eq. 2.23 distract you; it carries over
from Eq. 2.21 and is largely a matter of convention.

Problem 2.20 One of these is an impossible electrostatic field. Which one?
(@) E=k[xyX+2yzy+3xzZ];
(b) E=k[y?&+ 2xy + 22§ + 2yz2].

Here k is a constant with the appropriate units. For the possible one, find the poten-
tial, using the origin as your reference point. Check your answer by computing VV'.
[Hint: You must select a specific path to integrate along. It doesn’t matter what path
you choose, since the answer is path-independent, but you simply cannot integrate
unless you have a definite path in mind.]

2.3.2 H Comments on Potential

(i) The name. The word “potential” is a hideous misnomer because it inevitably
reminds you of potential energy. This is particularly insidious, because there
is a connection between “potential” and “potential energy,” as you will see in
Sect. 2.4. I'm sorry that it is impossible to escape this word. The best I can do is
to insist once and for all that “potential” and “potential energy” are completely
different terms and should, by all rights, have different names. Incidentally, a sur-
face over which the potential is constant is called an equipotential.

(ii) Advantage of the potential formulation. If you know V, you can eas-
ily get E—just take the gradient: E = —V V. This is quite extraordinary when
you stop to think about it, for E is a vector quantity (three components), but V
is a scalar (one component). How can one function possibly contain all the in-
formation that three independent functions carry? The answer is that the three
components of E are not really as independent as they look; in fact, they are ex-
plicitly interrelated by the very condition we started with, V x E = 0. In terms of
components,

IE, OE, IE. OE, IE. IE.
dy  ox’ ay  dz 9z ox

This brings us back to my observation at the beginning of Sect. 2.3.1: E is a very
special kind of vector. What the potential formulation does is to exploit this feature
to maximum advantage, reducing a vector problem to a scalar one, in which there
is no need to fuss with components.
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(iii) The reference point O. There is an essential ambiguity in the definition of
potential, since the choice of reference point O was arbitrary. Changing reference
points amounts to adding a constant K to the potential:

r (@] r
V’(r):—/ E-dl:—/ E-dl—/E-dl:K—i—V(r),
o’ / (@]

where K is the line integral of E from the old reference point O to the new one O'.
Of course, adding a constant to V will not affect the potential difference between
two points:

V'(b) — V'(a) = V(b) — V(a),

since the K’s cancel out. (Actually, it was already clear from Eq. 2.22 that the
potential difference is independent of O, because it can be written as the line
integral of E from a to b, with no reference to 0.) Nor does the ambiguity affect
the gradient of V:

vV =VV,
since the derivative of a constant is zero. That’s why all such Vs, differing only
in their choice of reference point, correspond to the same field E.

Potential as such carries no real physical significance, for at any given point
we can adjust its value at will by a suitable relocation of O. In this sense, it is
rather like altitude: If I ask you how high Denver is, you will probably tell me
its height above sea level, because that is a convenient and traditional reference
point. But we could as well agree to measure altitude above Washington, D.C.,
or Greenwich, or wherever. That would add (or, rather, subtract) a fixed amount
from all our sea-level readings, but it wouldn’t change anything about the real
world. The only quantity of intrinsic interest is the difference in altitude between
two points, and that is the same whatever your reference level.

Having said this, however, there is a “natural” spot to use for O in
electrostatics—analogous to sea level for altitude—and that is a point infinitely
far from the charge. Ordinarily, then, we “set the zero of potential at infinity.”
(Since V(O) = 0, choosing a reference point is equivalent to selecting a place
where V is to be zero.) But I must warn you that there is one special circum-
stance in which this convention fails: when the charge distribution itself extends
to infinity. The symptom of trouble, in such cases, is that the potential blows up.
For instance, the field of a uniformly charged plane is (o/2¢)n, as we found in
Ex. 2.5; if we naively put O = oo, then the potential at height z above the plane
becomes

The remedy is simply to choose some other reference point (in this example you
might use a point on the plane). Notice that the difficulty occurs only in textbook
problems; in “real life” there is no such thing as a charge distribution that goes on
forever, and we can always use infinity as our reference point.
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(iv) Potential obeys the superposition principle. The original superposition
principle pertains to the force on a test charge Q. It says that the total force on Q
is the vector sum of the forces attributable to the source charges individually:

F=F +F,+...

Dividing through by Q, we see that the electric field, too, obeys the superposition
principle:

E=E +E,+...

Integrating from the common reference point to r, it follows that the potential also
satisfies such a principle:

V=Vi+V,+...

That is, the potential at any given point is the sum of the potentials due to all the
source charges separately. Only this time it is an ordinary sum, not a vector sum,
which makes it a lot easier to work with.

(v) Units of Potential. In our units, force is measured in newtons and charge
in coulombs, so electric fields are in newtons per coulomb. Accordingly, potential
is newton-meters per coulomb, or joules per coulomb. A joule per coulomb is
a volt.

Example 2.7. Find the potential inside and outside a spherical shell of radius R
(Fig. 2.31) that carries a uniform surface charge. Set the reference point at infinity.

P
T
V.
D
FIGURE 2.31
Solution
From Gauss’s law, the field outside is
1 A
E= ir,
4eq r?

where ¢ is the total charge on the sphere. The field inside is zero. For points
outside the sphere (r > R),
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To find the potential inside the sphere (r < R), we must break the integral into
two pieces, using in each region the field that prevails there:

-1 (R ' 1 ql” 1
V() = / i,zdr’—/ Odar = —321" 40 1
r R
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Notice that the potential is not zero inside the shell, even though the field is.
V is a constant in this region, to be sure, so that VV = (0—that’s what matters.
In problems of this type, you must always work your way in from the reference
point; that’s where the potential is “nailed down.” It is tempting to suppose that
you could figure out the potential inside the sphere on the basis of the field there
alone, but this is false: The potential inside the sphere is sensitive to what’s going
on outside the sphere as well. If I placed a second uniformly charged shell out at
radius R’ > R, the potential inside R would change, even though the field would
still be zero. Gauss’s law guarantees that charge exterior to a given point (that
is, at larger r) produces no net field at that point, provided it is spherically or
cylindrically symmetric, but there is no such rule for potential, when infinity is
used as the reference point.

Problem 2.21 Find the potential inside and outside a uniformly charged solid sphere
whose radius is R and whose total charge is ¢. Use infinity as your reference point.
Compute the gradient of V in each region, and check that it yields the correct field.
Sketch V (r).

Problem 2.22 Find the potential a distance s from an infinitely long straight wire
that carries a uniform line charge A. Compute the gradient of your potential, and
check that it yields the correct field.

Problem 2.23 For the charge configuration of Prob. 2.15, find the potential at the
center, using infinity as your reference point.

Problem 2.24 For the configuration of Prob. 2.16, find the potential difference
between a point on the axis and a point on the outer cylinder. Note that it is not
necessary to commit yourself to a particular reference point, if you use Eq. 2.22.

2.3.3 W Poisson’s Equation and Laplace’s Equation

We found in Sect. 2.3.1 that the electric field can be written as the gradient of a
scalar potential.

E=-VV.
The question arises: What do the divergence and curl of E,

V-E=— and VxE=0,
€0



